# NEP: Autoregressive Image Editing via Next Editing Token Prediction

Huimin Wu, Xiaojian Ma, Haozhe Zhao, Yanpeng Zhao, Qing Li ⊠





# Introduction

TL;DR: We propose NEP, a targeted and efficient image editing method. It allows regeneration solely at edited regions, which avoids unintended modification and enhances efficiency. Besides, it makes self-improvement during the image generation process possible.

| Input                   | Mask                    | Ground truth          | MagicBrush    | NEP (ours) |
|-------------------------|-------------------------|-----------------------|---------------|------------|
|                         |                         |                       |               |            |
|                         |                         |                       | Second Second |            |
| The same of the same of | The same of the same of | the state of the same |               |            |
| -170-                   | 1751-                   | 1757                  | -40-          | -10-       |
|                         |                         | A A                   |               |            |

"add tall shrubs"



"erase the sheeps"

# Visualized editing results "Could it be a glass of wine on the table?"

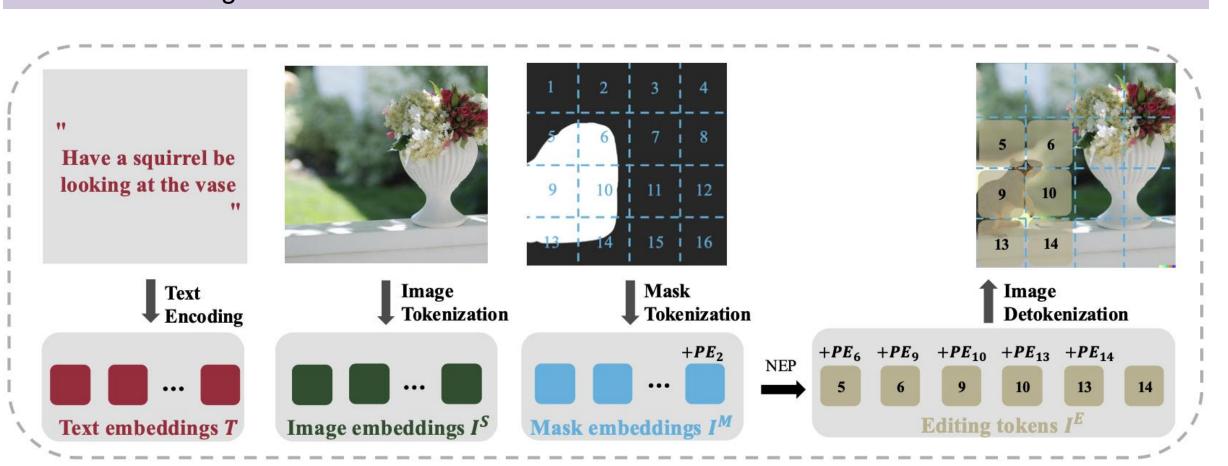
"let the woman wear a designer gown'

# Next Editing-token Prediction

# RLlamaGen: First stage



# **NEP**: Second stage



# Quantitative editing results

| Settings    | Methods                | L1↓         | <b>L2</b> ↓   | CLIP-I↑             | DINO↑               |
|-------------|------------------------|-------------|---------------|---------------------|---------------------|
|             | Gi                     | lobal Descr | iption-guided |                     |                     |
|             | SD-SDEdit              | 0.1014      | 0.0278        | 0.8526              | 0.7726              |
|             | Null Text Inversion    | 0.0749      | 0.0197        | 0.8827              | 0.8206              |
|             | GLIDE                  | 3.4973      | 115.8347      | 0.9487              | 0.9206              |
|             | Blended Diffusion      | 3.5631      | 119.2813      | 0.9291              | 0.8644              |
| Single-turn | Instruction-guided     |             |               |                     |                     |
|             | HIVE                   | 0.1092      | 0.0380        | 0.8519              | 0.7500              |
|             | InstructPix2Pix (IP2P) | 0.1141      | 0.0371        | 0.8512              | 0.7437              |
| i<br>!      | IP2P w/ MagicBrush     | 0.0625      | 0.0203        | 0.9332              | 0.8987              |
|             | UltraEdit              | 0.0575      | 0.0172        | $\overline{0}.9307$ | $\overline{0.8982}$ |
| i<br>!<br>! | FireEdit               | 0.0701      | 0.0238        | 0.9131              | 0.8619              |
|             | AnySD                  | 0.1114      | 0.0439        | 0.8676              | 0.7680              |
| ;<br>!<br>! | EditAR                 | 0.1028      | 0.0285        | 0.8679              | 0.8042              |
| <br>        | Ours                   | 0.0547      | 0.0163        | 0.9350              | 0.9044              |

| Method          | <b>CLIPdir</b> ↑ | <b>CLIPout</b> <sup>↑</sup> | L1↓    | <b>CLIPimg</b> <sup>↑</sup> | DINO↑  |
|-----------------|------------------|-----------------------------|--------|-----------------------------|--------|
| InstructPix2Pix | 0.0784           | 0.2742                      | 0.1213 | 0.8518                      | 0.7656 |
| MagicBrush      | 0.0658           | 0.2763                      | 0.0652 | 0.9179                      | 0.8924 |
| Emu Edit        | 0.1066           | 0.2843                      | 0.0895 | 0.8622                      | 0.8358 |
| UltraEdit       | 0.1076           | 0.2832                      | 0.0713 | 0.8446                      | 0.7937 |
| MIGE            | 0.1070           | 0.3067                      | 0.0865 | 0.8714                      | 0.8432 |
| AnyEdit         | 0.0626           | 0.2943                      | 0.0673 | 0.9202                      | 0.8919 |
| Ours            | 0.1064           | 0.3078                      | 0.0781 | 0.8710                      | 0.8440 |

For the first time, autoregressive models can achieve top performance on wellrecognized editing benchmarks.

without resorting to editing masks, our approach still achieves comparable or better editing performance.

# Test-time Scaling with NEP

### Zero-shot image editing



"Pancake with brown topping and ice cream."



"Club sandwich with fries and mustard."

"Red surfboard on grass in backyard."

## Text-to-image generation by integrating NEP into a self-improving loop

- . Revision region proposal
- 2. Image region revision
- 3. Reward model decision: to reject or accept

### Text-to-image generation results

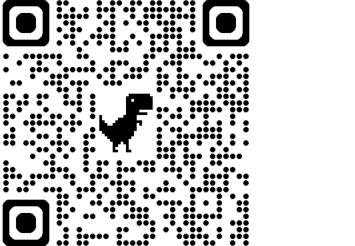


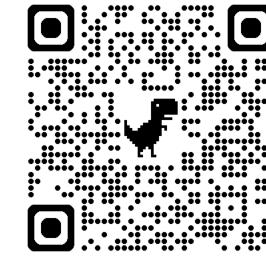


"A passenger plane that is parked on the runway."

"A kitchen filled with lots of counter top space."

| Methods                  | CLIP↑                 | FID↓                  | # Revision rounds | CLIP↑                   | FID↓                        |
|--------------------------|-----------------------|-----------------------|-------------------|-------------------------|-----------------------------|
| LlamaGen<br>LlamaGen ft. | 0.320<br>0.326        | 15.07<br>12.00        | 0 1               | 0.325<br><b>0.332</b>   | 11.49<br>9.94               |
| RLlamaGen<br>TTS w/ NEP  | 0.325<br><b>0.330</b> | 11.49<br><b>10.18</b> | 2<br>3<br>4       | 0.332<br>0.332<br>0.332 | 9.93<br>9.85<br><b>9.82</b> |







Project page

Paper

Code